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A new differential lattice Boltzmann equation (LBE) is presented in this work,
which is derived from the standard LBE by using Taylor series expansion only
in spatial direction with truncation to the second-order derivatives. The
obtained differential equation is not a wave-like equation. When a uniform grid
is used, the new differential LBE can be exactly reduced to the standard LBE.
The new differential LBE can be applied to solve irregular problems with the
help of coordinate transformation. The present scheme inherits the merits of the
standard LBE. The 2-D driven cavity flow is chosen as a test case to validate the
present method. Favorable results are obtained and indicate that the present
scheme has good prospects in practical applications.
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1. INTRODUCTION

There has been a rapid progress in developing and employing the lattice
Boltzmann equation (LBE) as an alternative computational fluid dynamics
approach for simulation of complex flows. (1–6) However, because of the
essential restriction of the standard LBE to the uniformity of lattice, (6) the
broad application of LBE in engineering has been greatly hampered. For
many practical problems, an irregular grid is always preferable due to



the fact that curved boundaries can be described more accurately, and
computational resources can be used more efficiently with it.
The lattice-uniformity requirement of the standard LBE comes from

its precursor, the lattice-gas automata (LGA) method. (2) In the LGA, all
the particles have the same mass, and a particle at one grid point must
move to its neighboring point in one time step. This requirement leads to
the lattice-uniformity. Lattice Boltzmann method (LBM) is developed from
the LGA, in which the mass of particle is replaced by the density distribu-
tion function. In general, the collision operator is linearized by BGK
approximation (7) in the LBM. The LBM enhances the computational effi-
ciency of the LGA method but inherits its feature of the lattice-uniformity.
Theoretically, this feature is not necessary to be kept because the distribution
functions are continuous in physical space. (8)

Currently, there are three ways to improve the standard LBE so that it
can be applied to complex problems. (9–18) The first is the interpolation-
supplemented LBE (ISLBE) proposed by He and his colleagues. (9–11) In this
method, interpolation is applied at every time step in order to obtain the
density distribution function at the grid point. So, the computational effort
by this method is very large as compared to the standard LBM. The second
is based on the solution of a partial differential equation. For simplicity,
this scheme is called the differential LBE. For complex problems, the dif-
ferential LBE can be solved by conventional finite difference schemes with
the use of coordinate transformation (16) or by finite volume method. (12–15)

The third is the grid refine technique which was first presented by Fillipova
and Hänel (17) in 1998 and further improved by Mei et al. (18) This technique
is based on the conventional adaptive mesh refinement method, using
a coarse grid in the whole domain and a finer grid in critical regions.
Second order interpolation is used on the interfaces and boundaries of
different grid levels. All these schemes have shown good accuracy in their
applications.
In this work, we will present a new differential LBE, which is derived

from the standard LBE. In our model, the Taylor series expansion is only
applied in the space direction and the second order derivatives are included
in the expansion. As a consequence, the resultant differential equation only
contains the spatial derivatives and is no longer a wave-like equation. For
complex problems or non-uniform grids, the obtained differential equation
is transformed into the form in the curvilinear coordinate system, where the
numerical computation is conducted. Our new differential model can be
exactly reduced to the standard LBE when uniform lattices are used. It was
found that when our model is applied to simulate the driven cavity flow,
very accurate results could be obtained, which are much better than those
obtained by the conventional differential LBE.
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2. STANDARD LBE AND CONVENTIONAL DIFFERENTIAL LBE

The two dimensional, standard LBE with BGK approximation can be
written as

fa(x+eax dt, y+eay dt, t+dt)

=fa(x, y, t)+[f
eq
a (x, y, t)−fa(x, y, t)]/y for a=0, 1, 2,..., 8 (1)

where y is the single relaxation parameter, (5) fa is the density distribution
function, feqa is its corresponding equilibrium state, dt is the time step and
ea is the particle velocity in the a direction. The nine discrete velocities
ea=(eax, eay) are defined as

ea=˛
(0, 0), a=0
(cos[(a−1) p/2], sin[(a−1) p/2]), a=1,..., 4

(cos[(a−5) p/2+p/4], sin[(a−5) p/2+p/4])`2, a=5,..., 8
(2)

The equilibrium density distribution function feqa is chosen to be in ref. 5

feqa=war[1+3(eaxu+eayv)+
9
2 (eaxu+eayv)

2− 32 (u
2+v2)] (3)

with w0=4/9, wa=1/9 for a=1,..., 4, and wa=1/36 for a=5,..., 8. The
macroscopic density r, the velocity u and v are obtained from

C
a

fa=r C
a

faeax=ru and C
a

faeay=rv (4)

The speed of sound of this model is cs=1/`3 , and pressure can be
directly computed from the equation of state

P=rc2s (5)

The lattice-uniformity of the standard LBE (1) requires that dx=eax ·dt,
dy=eay ·dt. This feature is quite restrictive in many applications involving
external flows where a large gradient exists only in a small region while the
domain of interest is large. To improve the standard LBE for its general
application, the differential LBE can be developed by using the Taylor
series expansion. Using the following Taylor series expansion

fa(x+eaxdt, y+eaydt, t+dt)

=fa(x, y, t)+eaxdt
“fa(x, y, t)
“x

+eaydt
“fa(x, y, t)
“y

+dt
“fa(x, y, t)
“t

+O(d2t )
(6)
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Equation (1) can be reduced to

“fa(x, y, t)
“t

+eax
“fa(x, y, t)
“x

+eay
“fa(x, y, t)
“y

=[feqa (x, y, t)−fa(x, y, t)]/(ydt) (7)

Equation (7) is a wave-like differential equation, which has the same form
as the discrete Boltzmann equation. From the process of derivation, we can
see that Eq. (7) is the result of the first-order Taylor series expansion of
Eq. (1) in time and space. Even when uniform lattices (dx=eax ·dt,
dy=eay ·dt) are used, Eq. (7) may not be reduced to Eq. (1). Due to
these factors, Eq. (7) may not be able to give accurate results for some
problems. An example is the simulation of 2-D driven cavity flow by using
the FD method to solve Eq. (7). Even on very fine uniform mesh, the
obtained results are still not accurate. It seems that the improvement of
Eq. (7) is to include the second order derivative terms in the Taylor series
expansion. As will be shown in Section 5, when our model with inclusion of
the second order derivatives is applied to simulate the driven cavity flow,
very accurate results can be obtained on the uniform and non-uniform
meshes.

3. A NEW DIFFERENTIAL LBE

In this section, a new differential LBE is presented. The idea is that the
Taylor series expansion is only applied for Eq. (1) in the spatial direction
and the second order derivatives are included in the expansion. Suppose
that a particle is initially at the grid point (x, y) at a time level t. Along the
a direction, this particle will move to the position (x+eaxdt, y+eaydt) at its
next time level t+dt. For complex problems or non-uniform meshes, the
position (x+eaxdt, y+eaydt) is usually not at the grid point (x+dx, y+dy).
To get the density distribution function at the grid point (x+dx, y+dy)
and the time level t+dt, we need to apply the Taylor series expansion
or other interpolation techniques such as the one used by He et al. (9–11)

In this work, the Taylor series expansion is used. Note that the time
level for the position (x+eaxdt, y+eaydt) and the grid point (x+dx,
y+dy) is the same, that is, t+dt. So, the expansion in the time direction is
not necessary. Using the function value and its derivatives at the grid
point (x+dx, y+dy), fa(x+eaxdt, y+eaydt, t+dt) can be approximated
by
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fa(x+eaxdt, y+eaydt, t+dt)

=fa(x+dx, y+dy, t+dt)+(eaxdt−dx)
“fa(x+dx, y+dy, t+dt)

“x

+(eaydt−dy)
“fa(x+dx, y+dy, t+dt)

“y

+
1
2
(eaxdt−dx)2

“
2fa(x+dx, y+dy, t+dt)

“x2

+
1
2
(eaydt−dy)2

“
2fa(x+dx, y+dy, t+dt)

“y2

+(eaxdt−dx)(eaydt−dy)
“
2fa(x+dx, y+dy, t+dt)

“x “y

+O[(eaxdt−dx)3, (eaydt−dy)3] (8)

Now, substituting Eq. (8) into Eq. (1) leads to

fa(x+dx, y+dy, t+dt)+(eaxdt−dx)
“fa(x+dx, y+dy, t+dt)

“x

+(eaydt−dy)
“fa(x+dx, y+dy, t+dt)

“y

+
1
2
(eaxdt−dx)2

“
2fa(x+dx, y+dy, t+dt)

“x2

+
1
2
(eaydt−dy)2

“
2fa(x+dx, y+dy, t+dt)

“y2

+(eaxdt−dx)(eaydt−dy)
“
2fa(x+dx, y+dy, t+dt)

“x “y

=fa(x, y, t)+[f
eq
a (x, y, t)−fa(x, y, t)]/y (9)

Note that all the spatial derivatives in Eq. (9) are evaluated at the time level
t+dt. It is interesting to notice that when uniform lattices are used, that is,
dx=eax ·dt, dy=eay ·dt, Eq. (9) can be exactly reduced to Eq. (1). As
compared to Eqs. (7) and (9) involves the second order derivatives. For
some problems with curved boundaries, Eq. (9) can be applied with the
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help of coordinate transformation. In such cases, the irregular physical
domain in the Cartesian coordinate system can be mapped to a regular
domain in the general coordinate system by the following equation

˛x=x(t, g)
y=y(t, g)

(10)

With Eq. (10), and Eq. (9) can be transformed into the following form

fa(t+dt, g+dg, t+dt)+A
“fa(t+dt, g+dg, t+dt)

“t

+B
“fa(t+dt, g+dg, t+dt)

“g
+C
“
2fa(t+dt, g+dg, t+dt)

“t2

+D
“
2fa(t+dt, g+dg, t+dt)

“g2
+E
“
2fa(t+dt, g+dg, t+dt)

“t “g

=fa(t, g, t)+[f
eq
a (t, g, t)−fa(t, g, t)]/y (11)

The coefficients A, B, C, D, and E in Eq. (11) are

A=a+12 a
2Jgvt+abJgvg+

1
2 b

2Jggg

B=b+
1
2
a2Jtvt+abJtvg+

1
2 b

2Jtgg

C=1
2 a
2 D=1

2 b
2 E=ab

where

a=[(eaxdt−Dx) yg−(eaydt−Dy) xg]/J,

b=[−(eaxdt−Dx) yt+(eaydt−Dy) xt]/J,

J=xt yg−xg yt, Jgtt=(xg ytt−xtt yg)/J,

Jggg=(xg ygg−xgg yg)/J, Jttt=−(xt ytt−xtt yt)/J,

Jttg=−(xt ytg−xtg yt)/J, Jgtg=−(xt ygg−xgg yt)/J

It is indicated that Eq. (10) can also be used to transform a non-uniform
mesh in the (x, y) plane to the uniform mesh in the (t, g) plane. Then
Eq. (11) is solved on the uniform mesh in the (t, g) plane. It is noted that
both Eqs. (9) and (11) are implicit forms. After numerical discretization,
they can be solved by iterative methods such as SOR approach.
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4. NUMERICAL IMPLEMENTATION

4.1. Finite Difference Discretization of New Differential LBE

Unlike the standard LBE, Eqs. (9) or (11) is a partial differential
equation, which has to be solved by a numerical method. In this work, we
will apply the finite difference scheme to do numerical discretization.
It was found that the central difference discretization of Eqs. (9) or

(11) could provide the stable solution. However, since the convection is
dominated in the LBE model, a second order upwind difference discretiza-
tion to the first-order derivatives can greatly enhance the stability of
numerical computation. Therefore, in this work, the first order derivatives
are approximated by the second-order upwind scheme. For example, “fa/“t
is approximated by

“fa
“t
=
3fai, j−4fai−1, j+fai−2, j

2Dt
, when A \ 0

=
−3fai, j+4fai+1, j−fai+2, j

2Dt
, when A < 0 (12)

where i and j are indexes of the grid point in the t- and g-directions,
respectively. For discretization of the second-order derivatives, both the
second order central and upwind difference schemes can be employed, but
the central difference scheme is easier to implement. The discretization of
“
2fa/“t2 can be made by

“
2fa
“t2
:
central
=
fai+1, j−2fai, j+fai−1, j

Dt2
(13)

and

“
2fa
“t2
:
upwind
=
2fai, j−5fai−1, j+4fai−2, j−fai−3, j

Dt2
, when C \ 0

=
2fai, j−5fai+1, j+4fai+2, j−fai+3, j

Dt2
, when C < 0 (14)

The discretization of derivatives in the g direction can be done in
a similar way. It should be indicated that when Eq. (7) (the conventional
differential LBE) is solved, the same second-order upwind schemes like
Eq. (12) are applied for numerical discretization. So, in this work, the
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numerical discretization of the conventional differential LBE and the new
differential LBE has the same order of truncation error, which is the
second order.

4.2. Bounce Back Condition on a Solid Wall

Numerical computation of Eq. (11) needs to implement the boundary
condition on the solid wall. So far, there are several ways to implement the
boundary conditions. (17–28) Among them, the bounce back condition is the
simplest one. On the wall, the density distribution functions in the outward
direction from the flow field are computed from the solution of Eq. (11),
while the density distribution functions in the inward direction to the flow
field are determined by the boundary condition. For 9-bits lattice model (5)

used in this work, the bounce back condition gives faŒ=fa, where
eaŒ=−ea, a is the outward direction from the flow field and aŒ is the inward
direction to the flow field.

5. NUMERICAL RESULTS AND DISCUSSION

The new differential LBE outlined above is now applied to simulate
one simple, yet nontrivial flow—the flow in a 2-D lid driven cavity. It
is noted that the above case has singularities at corners, which need be
treated carefully.

5.1. Flow in a 2-D Lid Driven Cavity

For this problem, the top boundary moves from left to right with a
constant velocity U while other boundaries are stationary. The present
simulation directly solves Eq. (11) in the (t, g) plane. Initially a constant
density, r0=1.0, is prescribed in the whole field, and the velocities in the
interior of the cavity are set to zero. On the top, the x-direction velocity is
U and the y-direction velocity is zero. On the top (moving) boundary, two
types of boundary conditions are implemented to test their accuracy. One is
the equilibrium distribution function boundary condition (EDFBC), (27) and
the other is the hydrodynamic boundary condition (HBC), (28) in which the
unknown distribution functions on the boundary are computed from the
solution of Eq. (4) (mass and momentum conservation). The bounce back
boundary condition is applied on other three boundaries. It was found
that, the two upper corners, which are singular points, can be treated as
stationary points (with zero velocity) or moving points (with velocity U).
Very little difference of these two cases was found in our simulation. The
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Mach number is chosen as Ma=0.15, so the velocity of the top wall can be
calculated by U=Ma · cs. The Reynolds number used in the simulation is
defined as Re=UL/n, where L is the characteristic length set as the value
of top wall, and n is the kinematic viscosity.
The driven cavity flow is a standard test case, which has been studied

by many researchers. Ghia et al. (29) gave a detailed study for this problem
by using the multi-grid finite difference scheme to solve the vorticity-stream
function formulation. Hou et al. (27) also gave detailed results for Re=
100 ’ 10,000 on a uniform 256×256 lattice by using the standard LBE.
Thus, their results are taken as benchmark solutions to validate our results
and test our new algorithm. In our simulation, the case of Re=400 is pre-
sented at different mesh sizes. All the results are normalized to simplify our
comparison between the present algorithm on a non-uniform grid, the
standard LBE on a uniform grid, the conventional differential LBE on a
non-uniform grid.
It is indicated that in the present work, both the conventional differ-

ential LBE and the new differential LBE are discretized by the second
order finite difference schemes.

5.2. Results of Conventional Differential LBE

The conventional differential LBE is firstly applied to solve this
problem. It was found that even using a uniform lattice, the obtained
numerical results are not accurate as compared to those of Ghia et al. (29)

and of the standard LBE. This can be observed clearly from Fig. 1, which
shows the velocity profiles along the vertical and horizontal centerlines.
Shown in Fig. 1 are the results of conventional differential LBE (noted as

Fig. 1. Velocity profiles along horizontal and vertical centerlines with Re=400 (— the
standard LBE with EDFBC (65×65); ---- the CDLBE with EDFBC(65(85); G (Ghia’s
result).
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Fig. 2. Streamlines of Re=400 obtained by standard LBE and CDLBE.

CDLBE in the figure for simplicity), the standard LBE, and Ghia et al. (29)

Note that the standard LBE is based on a uniform mesh of 65×65 while
the conventional differential LBE is based on a mesh of 65×85, and both
methods adopt equilibrium distribution function boundary condition on
the moving boundary. From Fig. 1, we can see that the velocity profiles
obtained by the CDLBE have obvious deviations from those of the stan-
dard LBE and Ghia et al. (29) The vortex positions obtained by the conven-
tional differential LBE and the standard LBE are also different. This can
be seen from Fig. 2 and Table I. Fig. 2 shows the streamlines of two
methods while Table I gives the detailed numerical comparison for the
vortex positions. All these comparisons show that the conventional
differential LBE cannot give a satisfactory result for this problem.
To reduce the effect of the boundary conditions, the hydrodynamic

boundary condition, (28) which has been viewed as a more accurate treat-
ment for the moving boundaries, is also used for the conventional differen-
tial LBE and the standard LBE. Figure 3 shows the velocity profiles along
the vertical and horizontal centerlines obtained by these two methods.
Obvious difference between the two results can also be observed.

Table I. Vortex Positions Obtained by Conventional Differential LBE (CDLBE), the

Standard LBE, and Ghia et al.(29)

Method Main vortex Right second vortex Left second vortex

Ghia et al. (29) (0.56, 0.61) (0.88, 0.12) (0.047, 0.046)
Standard LBE (EDFBC) (0.559, 0.608) (0.893, 0.117) (0.047, 0.046)
CDLBE (EDFCB) (0.562, 0.625) (0.89, 0.109) (0.0156,0.0155)
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Fig. 3. Velocity profiles along horizontal and vertical centerlines with Re=400 (— the
standard LBE with HBC (65×65); ---- the CDLBE with HBC(65×85);G (Ghia’s result).

5.3. Results of New Differential LBE

The new differential LBE developed in this work has considered the
second-order diffusion terms. Thus, it is expected to give better results as
compared to the conventional differential LBE. This is confirmed in Figs. 4
and 5, which show the velocity profiles along the vertical and horizontal
centerlines obtained by the new differential LBE with central and upwind
difference discretization, the standard LBE, and Ghia et al. (29) The standard
LBE is still based on a uniform mesh of 65×65, and like the conven-
tional differential LBE, the new differential LBE is based on a mesh of
65×85. The results in Figs. 4 and 5 are based on the equilibrium distribu-
tion and hydrodynamic boundary conditions, respectively. From Figs. 4
and 5, it can be seen that the present results agree very well with those of
the standard LBE and Ghia et al. (29) In Fig. 4, the central difference and
the upwind difference discretization of new differential LBE shows no

Fig. 4. Velocity profiles along horizontal and vertical central lines with Re=400 (— the
standard LBE with EDFBC (65×65); --- - --- the new differential LBE with upwind difference
and EDFBC (65×85); --- - - --- the new differential LBE with central difference and EDFBC
(65×85);G (Ghia’s result).
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Fig. 5. Velocity profiles along horizontal and vertical central lines with Re=400 (— the
standard LBE with HBC (65×65); --- - --- the new differential LBE with central difference and
HBC (65×85);G (Ghia’s result).

Fig. 6. Streamlines of Re=400 obtained by standard LBE and present method.

Fig. 7. Contours of vorticity for Re=400 obtained by standard LBE and present method.
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deviation in the numerical results. It can be seen from Fig. 5 that , under
the treatment of the hydrodynamic boundary condition on the moving
boundary, the results obtained from our new differential LBE, the standard
LBE and Ghia et al. (29) agree very well, and no much difference was found
when compared with the results by using the equilibrium distribution con-
dition on the moving boundary. The streamlines and vorticity contours of
the standard LBE, the new differential LBE with central and upwind dif-
ference discretization are shown respectively in Figs. 6 and 7. Clearly, these
results agree very well with each other, which also have a good agreement
with those of Ghia et al. (29) In addition, the vortex positions obtained by
our new method coincide with those of the standard LBE and Ghia et al. (29)

From this example, we can say that the present differential LBE is able to
provide accurate numerical results.

6. CONCLUSIONS

A new differential lattice Boltzmann equation was developed in this
work, which was successfully applied to simulate the 2-D driven cavity flow
on non-uniform grids. The results obtained by present model are in good
agreement with those of the standard LBE and available data in the litera-
ture. It is indicated that the new differential equation is not a wave-like
equation. As compared with the conventional differential LBE, the present
model gives more accurate results for the simulation of driven cavity
flow. For the comparison with the standard LBE, it can provide the same
order of accuracy but require more computational effort. The major
advantage of present model over the standard LBE is that it can be applied
to problems with complex geometry.
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